Synthetic tree models from iterated discrete graphs

نویسندگان

  • Ling Xu
  • David Mould
چکیده

We present a method to generate models for trees in which we first create a weighted graph, then places endpoints and root point and plan least-cost paths from endpoints to the root point. The collection of resulting paths form a branching structure. We create a hierarchical tree structure by placing subgraphs around each endpoint and beginning again through some number of iterations. Powerful control over the global shape of the resulting tree is exerted by the shape of the initial graph, allowing users to create desired variations; more subtle variations can be accomplished by modifying parameters of the graph and subgraph creation processes and by changing the endpoint distribution mechanisms. The method is capable of matching a desired target structure with a little manual effort, and can easily generate a large group of slightly different models under the same parameter settings. The final trees are both intricate and convincingly realistic in appearance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete solution of equation W(L3(T))=W(T) for the Wiener index of iterated line graphs of trees

Let G be a graph. The Wiener index of G, W (G), is defined as the sum of distances between all pairs of vertices of G. Denote by L i (G) its i-iterated line graph. In the talk, we will consider the equation W (L i (T)) = W (T) where T is a tree and i ≥ 1.

متن کامل

Tighter Bounds for Graph Steiner Tree Approximation

The classical Steiner tree problem in weighted graphs seeks a minimum weight connected subgraph containing a given subset of the vertices (terminals). We present a new polynomialtime heuristic that achieves a best-known approximation ratio of 1 + ln 3 2 ≈ 1.55 for general graphs, and best-known approximation ratios of ≈ 1.28 for quasi-bipartite graphs (i.e., where no two non-terminals are adjac...

متن کامل

D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs

The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...

متن کامل

On second iterated clique graphs that are also third iterated clique graphs

Iterated clique graphs arise when the clique operator is applied to a graph more than once. Determining whether a graph is a clique graph or an iterated clique graph is usually a difficult task. The fact that being a clique graph and being an iterated clique graph are not equivalent things has been proved recently. However, it is still unknown whether the classes of second iterated clique graph...

متن کامل

Wiener index of iterated line graphs of trees homeomorphic to

Let G be a graph. Denote by L(G) its i-iterated line graph and denote by W (G) its Wiener index. Dobrynin, Entringer and Gutman stated the following problem: Does there exist a non-trivial tree T and i ≥ 3 such that W (L(T )) = W (T )? In a series of five papers we solve this problem. In a previous paper we proved that W (L(T )) > W (T ) for every tree T that is not homeomorphic to a path, claw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012